Tech

使用 Spatial Pyramid Pooling 让 CNN 接受可变尺寸的图像

在传统 CNN 中,由于 Fully-Connected 层的存在,输入图像的尺寸受到了严格限制。通常情况下,我们需要对原始图片进行裁剪(crop)或变形(warp)的操作来调整其尺寸使其适配于 CNN。然而裁剪过的图片可能包含不了所需的所有信息,而改变纵横比的变形操作也可能会使关键部分产生非期望的形变。由于图片内容的丢失或失真,模型的准确度会受到很大的影响。

  • H.D. Lin
    H.D. Lin
5 min read
Tech

卷积神经网络入门

传统神经网络模型不能很好适应整张2维图片。比如一张 32×32×3(长32-宽32-RGB) 的彩色图片,在传统模型中第一层输入为了读入整张图片就需要 32×32×3 = 3072 个神经元,也就是有 3027 组参数,在这个简单的小图数据集(比如 CIFAR-10)好像看上去还能接受,但是一旦图片变成 200×200 的分辨率,就有 120,000 组参数了,这显然是训练时难以接受的。

  • OIdiot
    OIdiot
11 min read